
 1 

 

Some Measures of Support for 

 

Statistical Hypotheses 

 
 

M.Emadi  and  N.R.Arghami 

 

 

Department of Statistics, School of Mathematical Sciences, 

 

Ferdowsi University, Mashhad, Iran. 

 

 

Abstract.   Inadequacy of p-value as a measure of support for a statistical 

hypothesis provided by data has been pointed out by many authors. 

Likelihood ratio as such a measure, proposed by Richard Royall (2000), 

has an intuitive appeal and the advantage of being very simple. In this 

paper, however, we first state some properties that we want such a measure 

to have and propose an optimality criterion. Then it is shown that although 

a continuous optimal measure does not exist, there exists a continuous 

measure that has many desirable properties and is nearly optimal. 
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1   Introduction  
 

    P-value, if interpreted correctly, is a measure of evidence that the data 

provide in favor of the null hypothesis. The fact that p-value is very often 

misinterpreted as ''the probability of type I error'' and misused as "the 

probability that the null hypothesis is true'', has been mentioned by many 

authors. Using p-value as "a measure of the amount of evidence provided 

by the data in favor of the null hypothesis'', however, is very common, 

has been accepted by many notable statisticians (see for instance Lehman 

(1975)) and has been discussed by many authors (Robins  etal (2000) 

Bayarri, M.J and Berger, J.O. (2000), Schervish, M.J. (1996), Berger, 

J.O. and Se- llke, T. (1987), Casella, G. and Berger, R.L. (1987), 

Degroot, M.H. (1973)). 

   Although in the case of point null hypothesis (against the complement 

hypothesis), p-value (suitably calibrated) is an acceptable measure of 

evidence (Berger, J.O. etal (2001)), it is not recommended for the cases in 

which both hypotheses are simple. For this case Richard Royall (2000), 

relying on the ''law of likelihood" and ''likelihood principle", forcibly 

argues that such a measure should only be the likelihood ratio (or a 

continuous and strictly increasing transformation of it). The argument is 

quite convincing, but since it is only based on a principle, one cannot rest 

assure unless its distributional properties are investigated and its 

optimality (in some sense) is compared with other intuitively appealing 

measures, even though they may not obey likelihood principle. In Section 

one, some desirable properties for such measures are mentioned and an 

optimality criterion is introduced and shown that there does not exist an 

optimal measure that satisfies the required conditions. In Section 3 a 

measure of support for the null hypothesis is introduced which is nearly 

optimal, has all the desirable properties and is more optimal than (a 

strictly increasing function of) likelihood ratio. In both sections it is 

assumed that both hypotheses are simple and R (the likelihood ratio) is a 

continuous random variable under both hypothesis. Our recomended 

measure of support is introduced in Section 4. Section 5 contains some 

figures. 
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2  Desirable properties of a measure of support 

 
   Let random vector X  have densities  xf1  and  xf1  (both completely 

know) under 1H and 2H  respectively. We are going to look for a function  

  of  
 











xf

xf
r

2

1 that can be used as a measure of support for 1H against 2H  

provided by observation xX   and 

 1p  takes values in the unit interval [0, 1], 

 2p  is a continuous function of the likelihood ratio r, 

 3p  is strictly increasing in r, 

 4p  is symmetric with respect to 1H and 2H , 

 5p  is consistent, 

 6p  has small probability of being strongly misleading, 

      Property 1p  is not really essential because one can always use a 

simple strictly increasing transformation to make the measure take values 

in the interval  ,0 or   , , without loosing any of the other 

properties. Properties 2p through 4p are essential because their absence, 

we believe, would be counter intuitive. 

    We say  is consistent if under 1:1 
p

H  and under 0:2 
p

H  . 

    Property 4p  means that 

 

 12

12

2121

,

1

,

HH

Hagainstfor H the data rovided by support pthe amount

Hagainstfor H the data rovided by support pthe amountHH











 

     We mention in passing that p-value has properties 1p  through 3p . 

   Property 6p  means that we want   to have small probability of taking 

small values (values near zero) under 1H and also small probability of 

taking large values (values near 1) under 2H . In other words if we denote 

the density of   under iH  by  2,1, iki and denote the cdf of   under 

iH  by  2,1, iki , we want their plots to be as in Figures 1 and 2 

respectively. 

     It is evident that probability of strong misleading evidence is smaller, 

the farther the two graphs in Figure 2 are apart. So we take our optimality 

criterion to be the area between the curves of cdf's of   under 1H , 2H  

and denote it by  abc . We can write, 
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     

     
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
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



dKdK
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where  i  denotes the expected value of   under .2,1, iH i  

     As an example, the curves of the cdf's of p-value are shown in Fig.3.\\ 

 

Theorem 1    abc  is maximized by 0  where 

 

 









10

11
0

r

r
r  

 

and 0  has properties 41 , pp  and 5p . 

To prove the above theorem we need the following 

Lemma 1   
 
  ,

2

1 r
rg

rg
  

where ig  is the pdf of 
 
 Xf

Xf
R

2

1  under  ,iH  and 
 
 xf

xf
r

2

1  is the observed 

value of .2,1, iR  

Proof:  We can write 

 

 
 

   
   

 

 










A

A

xdxf

xdxf

rGrG

rGrG

rg

rg

2

1

0
22

11

0
2

1 limlim
 


 

where  
 
  .

2

1  rrxA
xf

xf
 

But, noting that    
   xfxf
xf

xf

21
2

1   we have 

 

 

 
.

2

1





r

xdxf

xdxf
r

A

A r 

So the result follows. ■ 

Proof of Theorem 1:    We can write 

 

         .
1

0 21 drrgrgrabc     

The above integral is maximized if  r takes its smallest value (zero) 

when     021  rgrg  and its greatest value (one) where 

    021  rgrg . Thus 0  maximizes  abc  by Lemma 1. That 0 has 
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properties 41 , pp  and 5p  is evident. ■ 

 

      As is evident 0  (taking only values 0 or 1) either completely 

supports 1H  or completely supports ,2H  thus it is not suitable for our 

purpose. Fig.4 shows plot of 0  against r and Fig.5. shows cdf of 0  

under 1H  and .2H  

      In order to find a more acceptable measure, we impose the restriction 

of unbiased ness as defined below. 

 

Definition 1   A measure of support  is called unbiased if 

 

    21 1,01,0 HunderUandHunderU
ss

   

 

or equivalently if  

 

     1,0
21

 cccPandccP HH         ■ 

      If   is distributed as  1,0U  then it has equal probabilities of 

supporting either of the two hypotheses 1H  and 2H , while it has more 

probability of supporting  21 HH if it is stochastically greater (smaller) 

than  1,0U . So unbiased ness may be considered a desirable property on 

its own. 

Lemma 2 A continuous and strictly increasing measure of support  for 

1H  against 2H  is unbiased if and only if  

      0,21  rrGrrG   

where (as before)  rGi  is the cdf of 
 
 Xf

Xf
R

2

1  under .2,1, iH i  

Proof:  For 0r we can write 

       

  
  

   rrRP

rrRP

rrG

rGrrrG

H

H























1

1

1

1
1

1
1

1
1

 

The proof for     0,2  rrGr is similar.   ■ 

Theorem 2 Among all unbiased functions of r,  abc  is maximized by 

 
 

 








1

1

2

1

3
rrG

rrG
r  

where  13  can be any number in the unit interval. 
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Proof:  is similar to the proof of Theorem 1 except that values that   can 

take are restricted by Lemma 2.    ■ 

    The following theorem implies that 3  is strictly increasing in r . 

Theorem 3        .0,21  rrGrG  

Proof:  we can write 

   

  
 

 
 

  
 

  
 

 rrGxdxfr

xdxf
xf

xf

xdxf

RPrG

r

r

r

xf

xf

xf

xf

xf

xf

22

2

2

1

1

11

2

1

2

1

2

1

1





















 

We can also write 

     

  
 

 
 

  
 

  
 

    rGrrGrxdxf

xdxf
xf

xf
xdxf

rRPrGrG

r

rr

H

xf

xf

xf

xf

xf

xf

222

2

2

1
1

11

1

1

2

1

2

1

2

1

1














 

So for 1r we have    rGrG 21   that is for 1r  we have  

    0,21  rrGrG      ■ 

 

      The fact that 3  satisfies restriction 4p  is shown by the following 

Theorem 4       213123 ,1, HHHH    

Proof:    We have 

 

 
 

 

 
 

 

 
 
 

 

 
 .,1

1

1

1
,

1

1

1
,

1

1
,

213

1

2

1

2

2

1

123

1

2

1

2

HH
rrRP

rrRP

RXf

Xf
Rwhere

rrRP

rrRP

rxf

xf
rwhere

rrG

rrG
HH

H

H

H

H













































 

where 
iG  is cdf of .2,1,  iR   ■ 

Theorem 5  3  is consistent. 

Proof: is similar to the proof consistency of 2  in Theorem 8 bellow.  ■ 

 

    We can remedy the discontinuity of  3  by suitably scaling it to give 
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   

 
  











111

1

212

1

112
1

4

2

1

rrG

rrG

G

G
  

       Since 3  is continuous for all values of r  except for 1r , it is 

evident that 4  is continuous for all values of r  and   .
2

1
14   4  is 

however not optimal that is     043   abcabc (where the difference 

can be substantial for large sample size) and can be biased if  
2
1

1 1 G  or 

 
2
1

2 1 G (which can happen for small sample sizes for some distributions 

such as exponential distribution).     ■ 

 

     The fact that maximizing  abc  has no solution among the class of 

continuous measures is shown by 

the following 

Theorem 6   Let 

 

 
      































rrr

rrG

rrG

GG
11

1

1

2

11

2

1

12

 

then        abcabcts 30..00 . 

Proof: 

Since  rG1  and  rG2  are continuous, as  0 ,     03   abcabc . 

So the result follows.     ■ 

 

 

3     A measure of support for 1H  against 2H  based 

on p-values 
     The main drawbacks of p-value as a measure of support for 1H  

(against 2H ) are the fact that its value does not in any way depend on 2H  

and that under 1H  it is distributed as  1,0U , so that under 1H  it is 

equally likely to take any value in the unit interval. The second of the 

above is also responsible for the fact that, under 1H , p-value is 

stochastically much smaller than 3 . So it is conceivable that if a measure 

is defined as a function of both p-values (p-value when 1H  is the null 

hypothesis and p-value when 2H  is the null hypothesis), it would not 

only have a symmetric relation with 1H  and 2H , but it would also have 
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greater abc . It turns out that 2 , as defined below, has all desirable 

properties and its  abc  is not far from optimal. 

Theorem 7   Let 

 
   rGrG

rG

21

1
2


  

where iG  is cdf of R  under 2,1, iH i . Then 2  is unbiased. 

Proof:  We know from Theorem 3 that     .0,21  rrGrG  

So we can write 

        11 2121  rGrGrGrG  

   
 

    










 c

RGRG

RG
PcPc

21

1
121,1,0   

      1,0~,
1

111 URGsinceccRGP
H

  

 

Since by 4p      122212 ,1, HHHH    ,  we have 

     cHHPcHHP  1,, 12222122   

     cccHHP  111,1 1222   

where the above inequality follows from the first part of the proof.    ■ 

Theorem 8  2  has all properties 1p  through 6p . 

Proof:   That 2  has properties 1p  and 2p  is obvious. 

Assuming that 1G  and 2G  are differentiable we differentiate 2  w.r.t r  to 

get 

       

    
r

rGrG

rGrgrGrg

dr

d





 ,0

2

21

12212  

This proves 3p . 

To prove 4p  we can write 

 
 

   
 
 

 
 

 
   

 
   

 .,1

,,
1

,
1

,,

212

12

2

12

2

2

1

2

1

12

2
122

HH
rGrG

rG

rRPrRP

rRP

xf

xf
r

Xf

Xf
R

r
r

R
R

rRPrRP

rRP
HH




















 

To prove 5p  (consistency) we assume that the elements of the random 

vector X  are iid random variables each distributed according to a 

distribution with density 
if  under .2,1, iH i  Furthermore we assume 

that 
1f  and 

2f  have common support and are distinct, that is the set 
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    xfxfx   21  has nonzero Lobesgue measure. Since  rG1 and  rG2 , 

are p-values of the MP (Neyman Pearson) tests when 1H  and 2H  are 

regarded as the null hypothesis respectively and since under the above 

assumptions these tests are consistent (their power tends to 1 as n ), 

we conclude that as n    11

1 
H

RG ,   02

1 
H

RG ,  

  01

2 
H

RG   12

2 
H

RGand  in probability. Therfore  R2  tends 

in probability to 1 and 0 under 1H  and 2H  respectively. 

It was proved in Theorem 7 that     0,121  rrGrG , knowing that 

   1,0~
1

1 URG
H

 we can write 

    ,1,
111

, 112121 
















 k

kk
RGP

k
HHP  , 

and 

 

 

 

 

■ 

 

4     Testing statistical Hypotheses by observing 

the value of 2  
Let 

 

 

 




















1
0

1
1

2

2













r

r

r  

be a test for testing 1H  (as the null hypothesis) against 2H  (as the 

alternative hypothesis), where 1H and 2H are both simple, then we have 

the following 

 

Theorem 9   Let   be as defined above, then 

i)    epr , where  epr  is defined to be the error probability ratio 

ofs   that is 

   

  .
11

,,
1

,
1

1,
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421222122

kk
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k
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k
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
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
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



















 
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 

 
 rG

rG

oferrorIItypeofyprobabilit

oferrorItypeofyprobabilit
epr

2

1












 

ii)   minimizes both error probabilities among all members of the class 

    eprD  

Proof:  (i) It is obvious that   can be written as 

 

 













r

r

2

2

0

1  

where  
 
 rG

rG
r

2

1
2  . It is elementary that 2  takes values in the interval  

 ,0  and is also a continuous and strictly increasing function of r. So we 

can write 

    
  

  
  

  
  

   



































1
221

21

1
21

1
22

1
21

22

21

G

G

RP

RP

RP

RP
epr 

 

 

 (ii) Since  r2  is strictly increasing in r,   is MP of its size. Now 

let  D , that is let    epr  and suppose      type I error 

probability of  . 

If      , then since   is MP of size  , we have 

      ofyprobabiliterrorIItype , 

and if       then we can write 

     
 

 
 

   


















 eprepr
 

 

So in either case we      . 

That       follows from the above inequality and the assumption 

that     eprepr  .    ■ 
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     If the researcher is supplied with the value of 2 , by the above 

theorem, he can perform a test of 1H  against 2H  in such a way that the 

error probability ratio of his test is equal to his desired value  , and he 

can be sure that this test has smallest error probabilities of both kinds 

among all tests with epr . 

    A desirable property of such a test is that both errors benefit from an 

increase in sample size (both decrease) and thus the "large sample 

problem'', (which is the fact that in practice the null hypothesis is always 

rejected for large enough sample size) does not arise. 

      We would like to mention that in all specific cases (that is when 1f  

and 2f  belong to some specific family such as normal, exponential, etc.) 

that we have considered,  2abc  is greater than  1abc . The following 

Figures show the above claim for the normal and the 

exponential cases. Also note that it is seen from the corresponding 

figures, that 1  is not unbiased. 

 

 

5 Some Plot 
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